Контрольная работа № 2. КОЛЕБАНИЯ

1. Тело массой m совершает колебания по закону $x = A\sin(\omega t + \varphi_0)$. Найдите потенциальную и кинетическую энергию тела в момент времени t. Чему равны максимальная сила, действующая на тело, и его полная энергия? Данные для своего варианта возьмите в табл. 1.

Таблица 1

№ вари-	1	2	3	4	5	6	7	8	9	10	11	12	13
анта →	1	_		'	3	U	,	O		10	11	12	13
m , $\kappa \Gamma$	0,1	0,2	0,1	0,3	0,2	0,1	0,1	0,2	0,3	0,4	0,3	0,5	0,2
A, cm	2	3	4	5	6	8	8	6	5	4	3	2	4
ω, рад/с	31,4	6,28	12,6	1,57	3,14	1,57	6,28	12,6	12,6	3,14	6,28	31,4	15,7
фо, рад	$\pi/4$	$\pi/3$	$\pi/2$	$3\pi/4$	π	$3\pi/2$	$\pi/4$	$\pi/3$	$\pi/2$	$3\pi/4$	π	$3\pi/2$	$\pi/4$
t, c	0,5	1	1	0,5	0,5	1	0,5	0,5	1	1	2	2	1,5

2. Тело массой m на пружине с жёсткостью k совершает затухающие колебания с начальной амплитудой A_0 . Найдите период, коэффициент затухания и логарифмический декремент этих колебаний, если за 20 с энергия колебаний уменьшилась в n раз. Данные для расчётов — в табл. 2.

Таблица 2

№ вари- анта →	1	2	3	4	5	6	7	8	9	10	11	12	13
т, кг	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,1	1,2	1,3
A_0 , cm	20	30	40	50	60	18	28	16	50	40	30	20	10
<i>k</i> , Н/м	100	120	150	200	220	250	300	320	350	400	420	450	500
n	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0	2,1	2,2	2,3

3. Материальная точка участвует одновременно в двух колебаниях, направленных по одной оси: $x_1 = A_1 \sin(\omega t + \varphi_{01})$; $x_2 = A_2 \sin(\omega t + \varphi_{02})$ Найдите амплитуду и начальную фазу результирующего колебания, запишите его уравнение. Постройте векторную диаграмму для начального момента времени, соблюдая масштаб. Данные для своего варианта возьмите в табл. 3.

Таблица 3

№ вари- анта →	1	2	3	4	5	6	7	8	9	10	11	12	13
A ₁ , M	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	0,8	0,2	0,3
A_2 , cm	20	30	40	50	60	18	28	16	50	40	30	20	10
φοι, °	30	45	60	90	120	135	150	180	210	240	270	300	330
φ02, °	0	90	30	45	0	90	30	45	0	90	30	45	60

4. Найдите период малых колебаний кольца массой m с внешним радиусом R_1 вокруг горизонтальной оси, перпендикулярной плоскости кольца и проходящей через точку O на расстоянии R_1 от центра (см. рисунок). Данные для своего варианта возьмите в табл. 3.

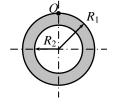


Таблица 4

№ вари- анта →	1	2	3	4	5	6	7	8	9	10	11	12	13
R_1 , cm	20	30	40	50	60	18	28	16	50	40	30	20	10
R_2 , cm	10	20	30	40	50	0	28	6	20	15	15	15	10